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Abstract

This study aims to automate the process of dairy beverage formulation and integrate design of
experiment techniques. A robotic setup with integrated pH sensors was developed to perform
continuous quality assessment of the process. The impact of process parameters on measured
pH, used as a proxi for taste, was quantified to optimise future experiments and to explore the
impact of variance in process parameters. The hypothesis of a linear model was first tested using
ANOVA, and temperature was found to have a significant impact on the pH of the milk. Based on
prior screening experiments, the type of powder and temperature were postulated to influence all
other parameters whilst mixing time and powder concentration would be unrelated. Half effects
and relative half effects of all factors were computed, and significant coefficients were chosen
for further analysis. The effect of the temperature and powder concentration was found to be
significant, whilst that of mixing time was challenging to accurately capture. Finally, a quadratic
model with a p-value smaller than 1% was used to estimate the optimum process conditions.
Overall, the study demonstrated the potential of automating dairy beverage formulation using
robotic setups and DOE techniques to achieve precise and consistent results. Future work can
explore the application of the method to other food products and the integration of more complex
DOE designs.
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1 | Introduction .
pare the performance of the robotic setup to

Food science is a discipline with significant that of a human.

potential for automation, particularly in the
area of food engineering and product optimi-
sation [1], [2]. Currently, much of the recipe
or product optimisation process is performed
manually [3], [4], which is a time-consuming
and labor-intensive process that limits the
number and throughput of trials, as well as
providing only sparse data regarding the pro-
cess. Prior works on the beverage domain
have focused on automation of individual sen-
sors for food optimisation [5] and exploration
of food flavor [6], but there has been lim-

The pH value of dairy beverages is an im-
portant quality parameter as it is closely re-
lated to the taste and consistency of the prod-
uct [7]. Any variation in ingredient quality or
quantity, including modification of preparation
parameters, can lead to variation in the mea-
sured pH, making pH adjustment essential in
maintaining product consistency. In order to
maintain product quality, adjusting the taste to
the nominal range is important in both food for-
mulation and mass manufacturing processes.

ited demonstration of this approach applied
to larger-scale and longer-lasting processes
performed by the robotic system. By utilising
robotic automation in the formulation of dairy
beverages, we can optimise the experimental
process for both time and precision, and com-

By developing a robotic setup with integrated
pH sensors, we can perform continuous qual-
ity assessment of the process.

Design of experiments (DOE) can greatly
benefit the field of food science by allowing
for a systematic exploration and optimisation
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Figure 1.1: Project mindmap

of the experimental process. Barroso et al.
uses a central composite design (CCD) to op-
timise the brewing parameters for coffee to en-
hance its aroma and taste [8]. Sonawane et al.
uses response surface methodology (RSM)
to optimise the formulation of probiotic apple
juice [9]. Despite the potential benefits of DOE
in food science, it has not been previously
used in combination with robotic automation.
By utilising a robotic setup for dairy beverage
formulation and integrating DOE techniques,
we can quantify the impact of process param-
eters on measured pH, optimize future exper-
iments from a time, precision, and accuracy
perspective, and explore the impact of vari-
ance in process parameters in terms of preci-
sion, accuracy, and reliability of sensory mea-
surements.

We find in this analysis the factor that do
and don’t have significant impacts on the pH.
We find also that the quadratic model captures
the effects of the variables better than the lin-
ear model with interactions. In this report,
we first present the project mindmap (Fig-
ure 1.1) that summarises our choice of DOE
techniques and analysis. Then, the experi-
mental setup, plan and factors and response
are presented. We finally discuss our results,

after which we will conclude with suggestions
for future experiments.

2 | Methods
2.1 Selection of factors and response

We have identified four main factors affecting
the dairy beverage preparation, summarised
in Table 2.1. The type of milk powder is the
only discrete variable in our analysis. We per-
formed experiments with two different pow-
ders from two suppliers (Migros and Coop).
The temperature of the water is controlled with
a heating mat and measured with a temper-
ature probe within a range recommended by
industry and from literature [10]. The cool-
ing rate will depend on the outside tempera-
ture and the time of the whole process (from
the dispenser to the final temperature probe).
Mixing is accomplished by a kitchen mixer
[11] and programmatically controlled. No fac-
tors have been recognised to be difficult to
vary. Previous experiments have shown the
close link between mixing speed and powder
concentration. From those experiments, we
concluded that we should only consider one
mixing speed for the selected concentration
range. The uncertainty of the temperature
probe is 0.5°C, while the measurement error
of the scale is 2g.



Table 2.1: Factors

Item | Nature | Range | Unit| Measurement
Milk powder | Qualitative | Two sup- | NA | NA
type pliers
Water tem- | Quantitative | 65-75 °C Temperature
perature probe
Powder con- | Quantitative | 25-75 g 100 kg
centration load
scale
Mixing time Quantitative | 15-60 s Python
program

Our objective is to improve the taste of the
dairy beverage, which is not easily measur-
able and subjective to external factors. The
final pH of the drink will be used as a proxy
measure of taste [7]. Our industrial partner
has conducted large scale tasting panels and
concluded that the final pH of the dairy bev-
erage should be between 6.5 to 6.7. More-
over, for each powder type, we performed a
fully manual preparation following the instruc-
tions on the milk powder packaging. The pH
for this mixture, which was also tasted and ap-
proved by human volunteers, will be regarded
as the baseline. Indeed, our aim is to optimise
the automated set-up to achieve a milk pow-
der as tasty as if it was manually prepared by
the consumer. pH will be experimentally mea-
sured with a probe with a tolerance of +/- 0.05
[12].

2.2 Experiment matrix

Screening of the various process variables
has previously been done and we will fo-
cus here on understanding the relative signifi-
cance and impact of those selected factors on
taste to optimise the process. An essay ma-
trix was designed to maximise the amount of
information collected with the minimal number
of experiments. First we tested the two lev-
els (min and max), coded as -1 and 1, for the
three continuous variables. We then added 10
points at intermediate levels: 7 points chang-
ing only one parameters and 3 points vary-
ing two variables. Finally, we add a centre
point which is replicated for both powders. Our
design resembles a fractional 2% factorial de-
sign with manually added points of interest.
Once the list of experimental conditions was
set, we randomly assigned a powder type to
each point. The random assignment was re-
peated until the distribution was deemed suit-
able (Figure 2.1). By doing so, we avoided

the repetition of the full matrix of experimen-
tal conditions for both powder types. This de-
sign will enable us to infer the constant param-
eters of both linear models with interactions
and quadratic models. Before performing the
experiments, our design was validated by the
commercially available JMP software for DOE.
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Figure 2.1: Graphical representation of the
experiment matrix

2.3 Experimental set-up

The customised robotic setup is shown in Fig-
ure 2.2 and the experimental process consists
of four main stages: water filling, pouring of
dairy powder, mixing of the ingredients with
an over-head mixer, and finally measurement
with a pH probe. Following manual weigh-
ing of the powder for improved accuracy, the
sample is automatically transferred from one
process step to the other with a UR5 robotic
arm. This experimental set-up enables a high
through-put generation of results (circa 10min
per data point).

3 | Results and Discussion

3.1  ANOVA with qualitative factors

Our first analysis considers the hypothesis of a
linear model without any interactions and with
constant coefficients. We use the Matlab func-
tion anovan() to perform the ANOVA and infer
the coefficients. From Figure 3.1, it is clear
that the temperature has a significant impact
on the pH of the milk. Temperature also dis-
plays the lowest p-value, further attesting of
its significance. Smaller concentrations than
the recommended value result in a greater dis-
tance from the baseline pH and thus a bad
taste. With the higher p-value (60.95%), mix-
ing time plays a minor role in the final pH of the
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Figure 2.2: Left: Customised automated robotic setup for food science processes. Right: Ex-
perimental process for dairy beverage making and pH measurement.

dairy beverage. The effects for 15 and 37.5s
mixing are very similar, confirming that it is not
a critical parameter in the preparation of the
milk. Finally, both powders are equivalent in
terms of distances from their baseline pH.
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Figure 3.1: ANOVA dotplot

3.2 Determination of important interac-
tions

Based on prior screening experiments, we
postulated that the type of powder and tem-
perature will influence all other parameters
whilst mixing time and powder concentration
would be unrelated. To verify those assump-
tions, we compute the half effects and relative
half effects of all factors. Here and onward,
the following subscripts are used: T for tem-
perature, t for mixing time, C for powder con-
centration, and P for powder type.

The constant, aq is computed to be 0.123,
and the barplot showing the relative half ef-
fects for the main and interaction effects are
shown as Figure 3.2. The normal plot shown
as Figure 3.3 also helps disqualify certain co-
efficients that align closest to the red line.
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Figure 3.2: Relative half effects of all factors
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Figure 3.3: Normal plot of effects

As significant coefficients, we chose ar,
ac, at, arc, and a,c by setting a threshold
on the relative half effect at 0.2. Additionally
a; was included since this term is contained in
two of the significant interactions. The ANOVA
was performed on the chosen coefficients and
the results are summarised in Table 3.1. The
effect of the temperature and powder concen-
tration is significant because there is only 2%
probability for it to be random. The effect
of mixing time has a high p-value and has a
large chance for it to be random, which was
also shown in the barchart and the normal plot
above. As for interactions both interactions in-
cluding the powder concentration has a low
chance for the effect to be random.



Table 3.1: Anova table for chosen significant
coefficients

|SSs DF Ms F p

ar 0.02 1 0.02 7.36 0.02
a 0.00 1 0.00 040 0.54
ac 0.02 1 0.02 6.37 0.02
ary 0.01 1 0.01 237 0.15
arc 0.01 1 0.01 3.28 0.09
ac 0.01 1 0.01 3.82 0.07
Error | 0.05 14 0.00

We then infer the coefficients of a lin-
ear model with the selected interactions:
temperature-concentration, temperature-
mixing time and mixing time-concentration.
The variance inflation factors (VIF) are shown
in Table 3.2. A VIF closest to 1 is optimum
and similar VIF indicate that those coefficients
are co-linear and that varying one or the other
leads to the same variation in pH. All VIF are
very close to unity (less than 10% variation),
especially those for the grand mean coefficient
and the coefficient related to powder concen-
tration.

Table 3.2: Variance inflation factors (VIF) for
coefficients of the linear model with selected
interactions

Coefficient | VIF
Constant 1.01
Temperature 1.05

Mixing time 1.04
Powder concentration 1.01
Powder type 1.07
Temperature-mixing time | 1.05
Temperature-concentration | 1.02
Mixing time-concentration | 1.03

One important note is that we do not fit the
model to the raw pH value, instead we use the
absolute distance between the measured pH
and the baseline pH for each of the powders.
Indeed if we were to use the raw pH value,
the coefficient for the constant (ap) would be
significantly higher than the other coefficients
and would mask the effects of the parameters.
The pH is a log scale of the concentration of
protons in solution and therefore the range of
variation of the pH is relatively small, although
the [H™] has changed significantly. Moreover,
comparing the baseline pH with the raw pH

measurement enables a fairer comparison be-
tween the two powder which have different
compositions and thus different baseline pH.

3.3 Comparison Linear and Quadratic
models

The coefficients for the quadratic model were
inferred and are shown in Figure 3.4. Both
models capture well that the effect of mixing
time alone is insignificant. Increasing the tem-
perature or the concentration reduces the dis-
tance from the baseline pH, therefore improv-
ing the taste. The quadratic term for tem-
perature has a marginal impact, whilst that
of mixing time and concentration seem impor-
tant and increase the distance form the base-
line pH. When fitting a quadratic model, the
constant coefficient decreases, indicating that
more effects are being captured by the model.
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Figure 3.4: Coefficients for linear model with
selected interactions and quadratic model

For both cases, the p-values are smaller
than 1% indicating that the model captures
the effects well since there is less than 1%
chance that the observed effect of a variable
is a coincidence. Moreover, the aliases of
the quadratic terms are most important on the
constant ag. There are no aliases between the
quadratic term for temperature and tempera-
ture itself, neither between the quadratic terms
for mixing time and concentration and the co-
efficient for the mixing time-concentration in-
teraction. The comparison between the lin-
ear model with interaction and the quadratic
model reveals that the quadratic model pro-
vides a better fit to the data as indicated by
its smaller p-value. This suggests that the
quadratic model captures more of the under-
lying relationships between the variables and



the response.

Finally, we wish to discriminate between
the linear model with interaction (Z;) and the
quadratic model (Z,). To do so, we decom-
pose the response as follows:

Y =Z1(0 +Ax )+ (Zy—Z; x Aoy (3.1)
=Z10+Z1 20 (3.2)

The p-value for the quadratic model is 12%
smaller than that of the linear model with in-
teractions, indicating that there is less chance
that an effect is fortuitous with this model.

3.4 Model optimisation

With the coefficients for the quadratic model,
we can look for the optimum process condi-
tions to minimise the distance from the base-
line pH, which is assumed to be linked to a
more tasty beverage. To do so, we used the
Matlab function fmincon() to find the minimum
distance from the baseine pH, constrained by
the upper and lower bounds of the variables.
Since our response is the absolute distance,
we only consider the positive domain. The op-
timum conditions which enabled the smallest
absolute distance from the baseline pH are
displayed in Table 3.3.

Table 3.3: Optimum process conditions

Variable | Migros | COOP
Temperature (°C) 71.3 75
Mixing time (s) 50.4 60
Powder concentration (g/L) 0.13 0.13

For the Migros powder, the optimum point
results in a null distance, whilst for the COOP
powder, the difference is 2%.

3.5 Suggested new set of experiments

Our analyses suggested that the effect of mix-
ing time for our experiment had a high prob-
ability of being random. In order to attempt
to find out whether any number of replicates
would permit us to observe a significant differ-
ence between the highest and lowest mixing
time, we performed an analysis using the con-
cept of least significant difference from Fisher
as shown in Figure 3.5. The figure shows that
even at a number of replicates of 30 times, it

is not enough to differentiate between the two
mixing times. Furthermore, this plot was ex-
tended to include a number of replicates until
100 times, but the least significant difference
never crossed the line marked at 6 = 0.017.
This suggests that it is beneficial to get rid of
the factor of mixing time completely in future
studies. Other factors that may be of interest
related to mixing could be mixing motion by
the robotic setup or temperature of the solu-
tion while mixing.

0 5 10 15 20 25 30
Nbr of replicates

Figure 3.5: Least significant difference be-
tween the highest and lowest mixing times

For our project, we could also have re-
sorted to the Doehlert design which is less
precise but has been proven suitable for food
chemistry applications [13]. For k factors,
the designs are obtained from a regular k-
dimensional simplex. Each variable is as-
signed a code with different levels, therefore
enabling not only to test the bounds. More-
over, the Doehlert design is convenient to
move through the experimental domain. It in-
deed takes advantage of the previously ex-
plored points to search for the optimal con-
ditions of the system. However, dealing with
the non-continuous variable for powder type is
challenging and we would have had to perform
all experiments twice: once with the Migros
milk powder and then with the COOP pow-
der. The experimental matrix in this instance
for one powder is shown in Figure 3.6.
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4 | Conclusion

In this report, we explored the potential of util-
ising robotic automation in the formulation of
dairy beverages and integrating Design of Ex-
periments techniques to optimise the exper-
imental process. By integrating robotic au-
tomation with DOE techniques, we can quan-
tify the impact of process parameters on mea-
sured pH, optimise future experiments from
a time, precision, and accuracy perspective,
and explore the impact of variance in pro-
cess parameters according to sensory mea-
surements.

We identified four main factors that affect
the dairy beverage preparation and chose the
final pH of the drink as a proxy measure of
taste. Our objective was to optimise the au-
tomated set-up to achieve a milk powder as
tasty as if it was manually prepared by the con-
sumer. We presented the experiment matrix,
which was designed to maximise the amount
of information collected with the minimal num-
ber of experiments.

In conclusion, our study shows that in-
tegrating robotic automation with DOE tech-
niques can optimise the dairy beverage for-
mulation process for both time and precision,

and provide valuable insights into the impact
of variance in process parameters on the final
product. We also identified factors that were
challenging to differentiate in the dairy bever-
age making process and also factors that have
a high significance in the resulting pH mea-
surement. The results of this study provide a
foundation for future work in the area of food
science automation and process optimisation.
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